

ROLE OF OSTEOTOMY IN ACL DEFICIENT PATIENTS

Patrick DJIAN, Paris, France

ISAKOS Symposium 8 June 2015

Outline

Natural history of ACL deficient patients

 Principles of osteotomy in management of knee instability and malalignment

 Management of combined knee instability and malalignment

Natural History of ACL Deficient Knee

- Literature somewhat difficult to interpret
 - Variety of factors influence natural history
 - Meniscal tears
 - Chondral damage from original injury
 - Heterogeneous population
 - Types of conservative treatments
 - Outcome measures often difficult to measure
 - "return to sport"
 - "return to previous function"

Natural History of <u>ACL</u> Deficient Knee

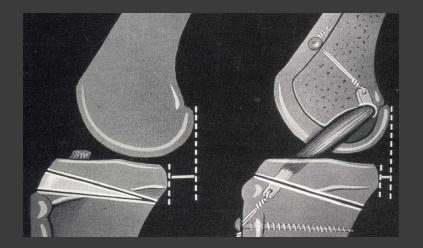
- Generally agreed upon principles
 - Gait altered
 - "quadriceps avoidance"
 - Repeated episodes of instability
 Meniscal and chondral damage
 - Degenerative changes present in most patients within 20- 25 years of injury
 - Worst in subset of patients with meniscal injury
 - Medial compartment > lateral compartment

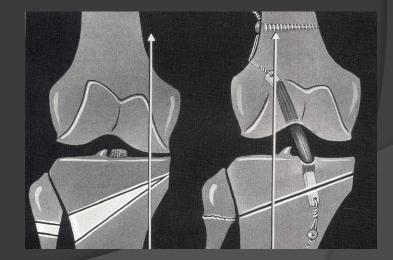
Natural History of <u>ACL</u> Deficient Knee

● H.Dejour - from Fu Knee Surgery

"...osteophyte and superficial destruction of cartilage are likely to develop within 10 years in knees with ACL rupture"

Significant arthrosis develops after longer periods (20-30 years).

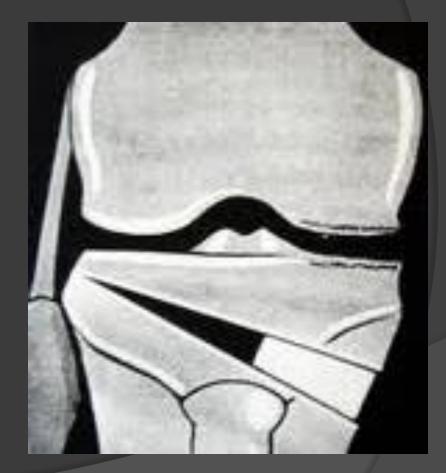

An additional meniscal lesion or meniscectomy constitutes a turning point in the evolution of arthrosis.


The meniscal factor is not the main factor; it is a contributory factor in the evolution of arthrosis in the ACL deficient knee."

Principles of Tibial OsteotomyType of osteotomy

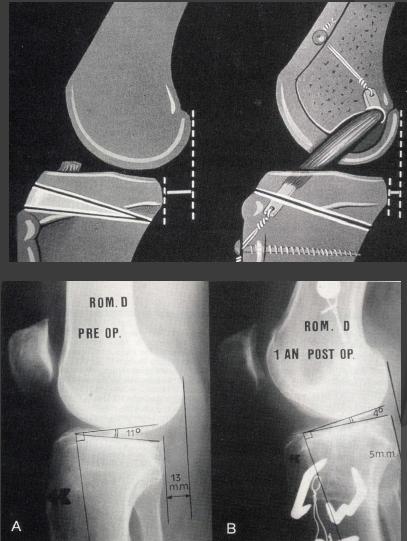
Extension

OSTEOTOMIES AND ACL DEFICIENT KNEES


INDICATIONS

 I. Unicompartmental arthrosis associated with ACL deficiency

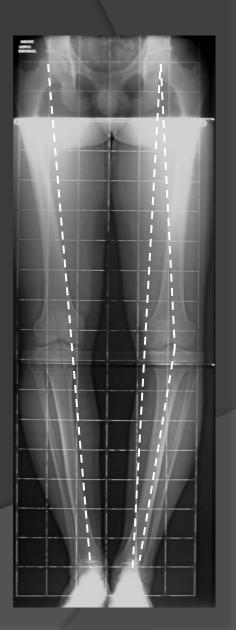
2. ACL + lateral & postero lateral associated tears


1. Osteotomy and ACL Deficient Knees

- Valgus osteotomy described in treatment of unicompartmental arthrosis associated with ACL deficiency
 - Shift mechanical axis laterally and decrease force through diseased medial compartment

Osteotomy and ACL Deficient Knees

- Osteotomy has been used in treatment of instability
 - Extension type to decrease tibial slope and anterior tibial translation


1. ACL + arthritis

CAUCH

2: ACL + Postero lateral tears?

Under-estimated

10 à 15% of ACL ruptures

Neglected posterolateral lesions

Gersoff Clin Sport Med 1988

ACL + Posterolateral tears

Increased forces on the graft

Re-Rupture of the ACL Graft

15% Schepsis (AANA 1995)
 24% Noyes (AJSM 1996)

Hughston CORR 1980, JBJS 1985, Kannus AJSM 1987, Noyes AJSM 1995, Rubman C Orthop 1999, LaPrade AJSM 1999

Posterolateral Laxity: Place of HTO

« HTO is the best LCL reconstruction » A.Trillat

Lift-Off **Clinical Exam** Alignement Monopodal stance IR $LCL \pm PLC$

Biomechanical studies

- Am J Sports Med. 2004 Mar;32(2):376-82.
- Ten cadaveric knees were studied using a robotic testing system using three loading conditions:
 - (1) 200 N axial compression
 - (2) 134 N A-P tibial load
 - (3) combined 200 N axial and 134 N A-P loads
- Tibial slope was increased from 8.8 +/- 1.8 deg. to 13.2 +/- 2.1 degrees,
 - anterior shift of tibia relative to femur (3.6 +/- 1.4 mm).
 - Under axial compression, the osteotomy caused a significant anterior tibial translation up to 1.9 +/- 2.5 mm (90 degrees).
 - Under A-P and combined loads, no differences were detected in A-P translation or in situ forces in the cruciates (intact versus osteotomy)

Biomechanical studies

- Results suggest that small increases in tibial slope do not affect A-P translations or in situ forces in the cruciate ligaments.
- However, increasing slope causes an anterior shift in tibial resting position that is accentuated under axial loads.
- This suggests that increasing tibial slope may be beneficial in reducing tibial sag in a PCLdeficient knee, whereas decreasing slope may be protective in an ACL-deficient knee.

Biomechanical studies

- Am J Sports Med. 2006 Jun;34(6):961-7.
- I0 cadaveric knees: valgus HTO + anatomic double bundle ACL reconstruction
- Anterior tibial translation and internal rotation decreased by 2mm and 2 degrees at low flexion angles vs. ACL intact knees
- In-situ forces in posterolateral graft became 56-200% higher than those in the posterolateral bundle of the intact ACL
- N.B. may overconstrain knee and result in high forces in posterolateral graft, predisposing to graft failure

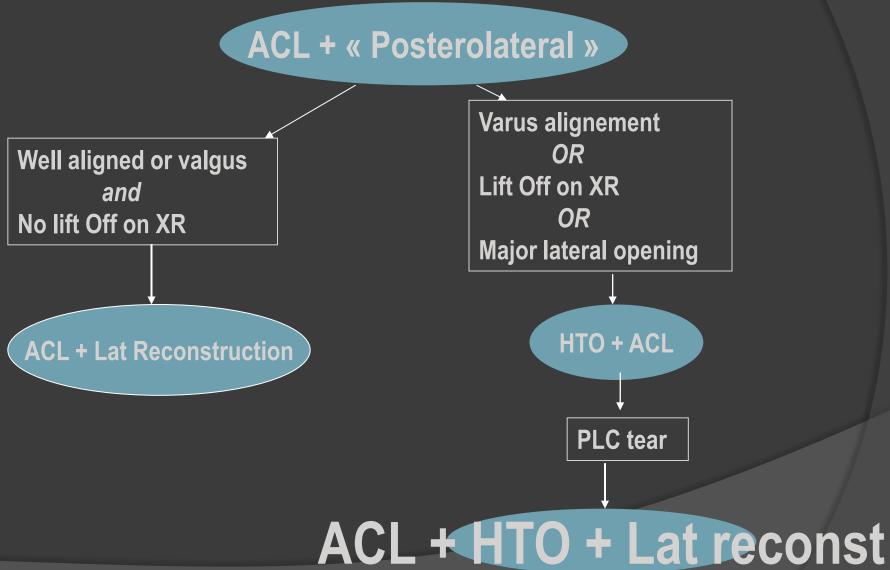
Clinical studies

- J Knee Surg. 2003 Jan;16(1):9-16
- 26 Patients with ACL insufficiency, symptomatic medial OA, varus
 - 14/26 recreational athletes minimum 2 year follow-up
- 12 valgus HTO alone vs.
- No change in instability
- No ROM deficit
- OA progression

14 valgus HTO + ACLR vs. grade 1 lachman 11/13 negative pivot 12/13 same OA progression

- Overall 23/26 patients able to play recreational sports
- Good or excellent results seen more often in HTO + ACLR group

Clinical studies


- Knee 2004 Dec; 11(6):431-7
- 29 patients (30 knees) retrospectively reviewed
- Previous single-stage ACLR + valgus HTO
- 19/30 had previous medial meniscectomy
- 2/30 major complications --> stiffness
- 12yr f/u (6-16)
 - 5/30 had progressed one arthritis grade
 - 14/30 returned to intensive sports
 - 11/30 played moderate sports
 - Avg. difference in anterior tibial translation (vs. Normal side) was 3mm

Take Home message

- Active patients with ACL deficiency and unicompartmental arthritis may benefit from ACL reconstruction and osteotomy with improved pain and return to recreational activities
- Radiographic (& clinical) progression of OA may be delayed or may be unchanged.

Good clinical results in case of ACL and PLC defiency

Posterolateral Laxity: Place of HTO

Thank you for your attention